AbstractThe influence of real gas effects and a turbulent boundary layer on shock wave attenuation in the expansion tube is studied by numerically solving the axisymmetric compressible Navier–Stokes equations with an adaptive mesh refinement technique. Numerical simulation results reveal that the ideal gas assumption is not applicable to the expansion tube, and the turbulent boundary layer plays a major role in decreasing the shock wave speed in the acceleration tube of the expansion tube. Shock wave attenuation is attributed to the turbulent boundary layer decreasing the pressure behind the shock wave. The numerical simulations that include the real gas effects and the development of turbulent boundary layers qualitatively agree with analytical solutions in the shock tube, and they show good agreement with the experimental results, especially for the shock speed in the acceleration tube of the expansion tube. Both effects should be considered in the numerical simulation model aimed to support experiments in expansion tubes.