Abstract

Inference of detailed vehicle trajectories is crucial for applications such as traffic flow modeling, energy consumption estimation, and traffic flow optimization. Static sensors can provide only aggregated information, posing challenges in reconstructing individual vehicle trajectories. Shockwave theory is used to reproduce oscillations that occur between sensors. However, as the emerging of connected vehicles grows, probe data offers significant opportunities for more precise trajectory reconstruction. Existing methods rely on Eulerian observations (e.g., data from static sensors) and Lagrangian observations (e.g., data from connected vehicles) incorporating shockwave theory and car-following modeling. Despite these advancements, a prevalent issue lies in the static assignment of shockwave speed, which may not be able to reflect the traffic oscillations in a short time period caused by varying response times and vehicle dynamics. Moreover, driver dynamics while reconstructing the trajectories are ignored. In response, this paper proposes a novel framework that integrates Eulerian and Lagrangian observations for trajectory reconstruction on freeways. The approach introduces a calibration algorithm for time-varying shockwave speed. The shockwave speed calibrated by the CV is then utilized for trajectory reconstruction of other non-connected vehicles based on shockwave theory. Additionally, vehicle and driver dynamics are introduced to optimize the trajectory and estimate energy consumption by applying a vehicle movement model. The proposed method is evaluated using real-world datasets, demonstrating superior performance in terms of trajectory accuracy, reproducing traffic oscillations, and estimating energy consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.