A fish pond with recommended water quality will produce healthy fishes. Fish ponds with poor water quality will cause fish mortality and outbreak of diseases to fish consumers. Physicochemical analysis was done using standard analytical methods, the total bacterial count was determined by dilution and membrane filtration techniques. Parasitological analysis was done using the centrifugation method. A total of fifteen well waters were sampled during wet season. Results showed that the temperature ranged from 27°C to 29°C, pH, 6.21 to 8.15; dissolved oxygen, 4.28 mg/l to 5.78 mg/l, electrical conductivity, 166.36 µs/cm to 394.00 µs/cm; total dissolved solids, 41 mg/l to 121 mg/l; total suspended solids, 1.00 mg/l to 19.40 mg/l; total solids, 42.00 mg/l to 140.4 mg/l; turbidity values, 7.01 NTU to 10.36 NTU; nitrate, 3.10 mg/l to 28.00 mg/l; total alkalinity, 36 mg/l to 91 mg/l; phosphate, 1.26 mg/l to 13.11 mg/l; sulphate, 0.39 mg/l to 4.37 mg/l; total chloride, 7.08 mg/l to 14.19 mg/l; carbonates, 1.33 mg/l to 2.35 mg/l; bicarbonates, 34.59 mg/l to 89.38 mg/l; total hardness, 25.31 mg/l to 53.04 mg/l; calcium hardness, 23.94 mg/l to 51.96 mg/l; magnesium hardness, 1.08 mg/l to 4.20 mg/l; total acidity, 2 mg/l to 22 mg/l; potassium, 0.04 mg/l to 2.23 mg/l; cadmium, 0.00 mg/l to 0.04 mg/l; lead, 0.01 mg/l - 0.16 mg/l; chromium, 0.00 mg/l - 0.03 mg/l; mercury was not detected, copper, 0.00 mg/l - 0.04 mg/l; arsenic, 0.00 mg/l - 0.02 mg/l; zinc, 0.00 mg/l to 0.02 mg/l; iron, 0.01 mg/l - 1.19 mg/l. The total bacterial counts ranged from 3.60-4.12 log cfu/ml; total coliforms, 14-46 cfu/100ml, Vibrio cholerae, 0-11 cfu/100ml; Vibrio parahaemolyticus, 0-15 cfu/100ml; faecal coliform, 1-9 cfu/100 ml; Acinetobacter calcoaceticus, 0-8 cfu/100 ml; Bacillus subtilis, 0-9 cfu/ml; Staphylococcus aureus, 0-5 cfu/ml; Pseudomonas aeruginosa, 0-12 cfu/100 ml; Pseudomonas fluorescens, 0-12 cfu/100 ml and Clostridium perfringens were not detected in any of the samples. Twelve bacterial species namely Klebsiella pneumoniae, Acinetobacter calcoaceticus, Escherichia coli, Staphylococcus aureus, Vibrio cholerae, Pseudomonas fluorescens, Pseudomonas aeruginosa, Proteus mirabilis, Vibrio parahaemolyticus, Bacillus subtilis, Shigella flexineri and Salmonella typhi were isolated and identified using standard analytical and molecular procedures. Parasites identified were Ichthyobodo species, Diplostomum species, Myxobolus species, Chilodonella species, Bothriocephalus species, Ambiphrya species and Leech species. Salmonella typhi had the highest frequency of isolation (20.63%) while Acinetobacter calcoaceticus and Staphylococcus aureus had the lowest frequency of isolation (2.83%). Ichthyobodo species had the highest frequency of isolation (21.43%) while Leech species had the lowest frequency of isolation (5.71%). Some of the physicochemical, bacteriological and parasitological parameters had values above World Health Organization admissible limits and therefore proper sanitary practices and water treatments must be employed to prevent epidemic among fish consumers.