Cell shape is crucial to cell function, particularly in neurons. The cross-sectional diameter, also known as caliber, of axons and dendrites is an important parameter of neuron shape, best appreciated for its influence on the speed of action potential propagation. Many studies of axon caliber focus on cell-wide regulation and assume that caliber is static. Here, we have characterized local variation and dynamics of axon caliber in vivo using the peripheral axons of zebrafish touch-sensing neurons at embryonic stages, prior to sex determination. To obtain absolute measurements of caliber in vivo, we paired sparse membrane labeling with super-resolution microscopy of neurons in live fish. We observed that axon segments had varicose or "pearled" morphologies, and thus vary in caliber along their length, consistent with reports from mammalian systems. Sister axon segments originating from the most proximal branch point in the axon arbor had average calibers that were uncorrelated with each other. Axon caliber also tapered across the branch point. Varicosities and caliber, overall, were dynamic on the timescale of minutes, and dynamicity changed over the course of development. By measuring the caliber of axons adjacent to dividing epithelial cells, we found that skin cell division is one aspect of the cellular microenvironment that may drive local differences and dynamics in axon caliber. Our findings support the possibility that spatial and temporal variation in axon caliber could significantly influence neuronal physiology.
Read full abstract