Nickel-titanium (Ni-Ti) has been widely used to make shape-memory actuator wire for numerous medical industrial applications, with the result that it frequently comes into contact with the human body. High-quality and nontoxic surfaces of this material are therefore in high demand. We used a rotating magnetic field for an ultraprecision finishing of Ni-Ti stent wire biomaterials and evaluated the finishing technique’s efficacy with different processing oils. To create nontoxic Ni-Ti stent wire, the industrial processing oils that are generally used in the surface improvement process were exchanged for oils with low environmental impacts, and processed under rotating magnetic fields at different speeds and processing times. The processing performance of the different oils was compared and verified. The results show that ultraprecision magnetic abrasive finishing that uses olive and castor oil improves surface roughness by 66.67%, and 45.83%, respectively. SEM and energy-dispersive X-ray spectroscopy (EDX) analyses of the finished components (before and after processing) showed that the material composition of the Ni-Ti stent wire was not changed. Additionally, the magnetic abrasive tool composition was not found on the surface of the finished Ni-Ti stent wire. In conclusion, the environmentally friendly oil effectively improved the diameter of the Ni-Ti stent wire, demonstrating the utility of olive and castor oil in ultraprecision finishing of Ni-Ti stent wire biomaterials.
Read full abstract