Photothermal-triggering shape memory polyurethane allows for precise and controllable shape transformation under remote light stimulation, making it highly desirable for applications in intelligent devices. This study develops a sustainable and high-performance lignin-based polyurethane (LPU) using a one-stone-two-birds strategy, wherein lignin serves as both a synthetic monomer and an internal photothermal agent. The incorporation of lignin significantly improved the mechanical properties of LPU, achieving a tensile strength of 42.1MPa and an impressive elongation at break of 1558%. Additionally, the LPU exhibited exceptional photothermal heating capabilities due to the inherent intramolecular π-π conjugations and intermolecular π-π stacking effects of lignin, which facilitated the precise and contactless remote photoheating. Furthermore, the rigid structure of lignin and robust hydrogen bonding interactions provided LPU with excellent multi-cycle shape memory performance, with shape fixation and shape recovery rates exceeding 93% after five cycles. Under near-infrared irradiation, LPU demonstrated precise non-contact heating and remote photothermal shape-control capabilities. This research not only offers a sustainable and high-value application for lignin but also advances the development of environmentally friendly intelligent shape memory polyurethane materials.
Read full abstract