Dopamine is a neurotransmitter which is classified as a catecholamine. It is also one of the main metabolites produced by some tumor types (such as paragangliomas and neoblastomas). As such, determining and monitoring the level of dopamine is of the utmost importance, ideally using analytical techniques that are sensitive, simple, and low in cost. Due to this, we have developed a non-enzymatic dopamine sensor that is highly sensitive, selective, and rapidly detects the presence of dopamine in the body. A hybrid material fabricated with NiO and ZnO, based on date fruit extract, was synthesized by hydrothermal methods and using NiO as a precursor material. This paper discusses the role of date fruit extracts in improving NiO’s catalytic performance with reference to ZnO and the role that they play in this process. An X-ray powder diffraction study, a scanning electron microscope study, and a Fourier transform infrared spectroscopy study were performed in order to investigate the structure of the samples. It was found that, in the composite NiO/ZnO, NiO exhibited a cubic phase and ZnO exhibited a hexagonal phase, both of which exhibited well-oriented aggregated cluster shapes in the composite. A hybrid material containing NiO and ZnO has been found to be highly electro-catalytically active in the advanced oxidation of dopamine in a phosphate buffer solution at a pH of 7.3. It has been found that this can be accomplished without the use of enzymes, and the range of oxidation used here was between 0.01 mM and 4 mM. The detection limit of non-enzymatic sensors is estimated to be 0.036 μM. Several properties of the non-enzymatic sensor presented here have been demonstrated, including its repeatability, selectivity, and reproducibility. A test was conducted on Sample 2 for the detection of banana peel and wheat grass, and the results were highly encouraging and indicated that biomass waste may be useful for the manufacture of medicines to treat chronic diseases. It is thought that date fruit extracts would prove to be valuable resources for the development of next-generation electrode materials for use in clinical settings, for energy conversion, and for energy storage.
Read full abstract