The Jiza' basin is located in the eastern part of Yemen, trending generally in the E–W direction. It is filled with Middle Jurassic to recent sediments, which increase in thickness approximately from 3,000 m to more than 9,000 m. In this study, block-35 of this sedimentary basin is selected to detect the major subsurface geological and structural features characterizing this basin and controlling its hydrocarbon potentials. To achieve these goals, the available detailed gravity and magnetic data, scale 1:100,000, were intensively subjected to different kinds of processing and interpretation steps. Also, the available seismic reflection sections and deep wells data were used to confirm the interpretation. The results indicated three average depth levels; 12.5, 2.4, and 0.65 km for the deep, intermediate, and shallow gravity sources and 5.1 and 0.65 km for the deep and shallow magnetic sources. Accordingly, the residual and regional anomaly maps were constructed. These maps revealed a number of high and low structures (horsts and grabens and half grabens), ranging in depth from 0.5 km to less than 4.5 km and trending mainly in the ENE, NW, and NE directions. However, the analytical signal for both gravity and magnetic data also showed locations, dimensions, and approximate depths of the shallow and near surface anomaly sources. The interpretation of the gravity and magnetic anomalies in the area indicated that the NW, NNW, ENE, and NE trends characterize the shallow to deep gravity anomaly sources; however, the NE, NW, and NNE trends characterize the magnetic anomaly sources, mainly the basement. Two-dimensional geologic models were also constructed for three long gravity anomaly profiles that confirmed and tied with the available deep wells data and previously interpreted seismic sections. These models show the basement surface and the overlying sedimentary section as well as the associated faults.
Read full abstract