Early survival and growth of black alder, silver birch and Scots pine were investigated on reclaimed extremely stony and heterogeneous calcareous (pH 8) opencast oil shale mining areas (OOSMAs). Biomass allocation, production, leaf and root adaptations, and mineral nutrition in relation to tree species and soil heterogeneity were analysed. The adaptive strategies of tree species in first-year plantations on OOSMA were different. Scots pine allocated 1.5–2 times more biomass into leaves and fine roots than deciduous trees. The lower leaf/fine root biomass ratio was in proportion to the better survival (%) of seedlings, decreasing in the following order: black alder (93%) ≥ Scots pine (83%) > silver birch (64%). Deciduous trees improved mineral nutrition more by fine-root morphological adaptations than Scots pine; e.g. the mean specific root length (SRL, m g −1) of short roots increased in the following order: Scots pine (62) < black alder (172) < silver birch (314). The effect of soil heterogeneity on growth and adaptations was minor. All studied species suffered from P and N, and deciduous species also from K deficiency. In the first year after planting, black alder was best adapted to the harsh conditions of the post-mining substrate. The approaches of this study can be used for other regions where wastelands require reclamation.