Spatio-temporal count data relating to a set of non-overlapping areal units are prevalent in many fields, including epidemiology and social science. The spatial autocorrelation inherent in these data is typically modelled by a set of random effects that are assigned a conditional autoregressive prior distribution, which is a special case of a Gaussian Markov random field. The autocorrelation structure implied by this model depends on a binary neighbourhood matrix, where two random effects are assumed to be partially autocorrelated if their areal units share a common border, and are conditionally independent otherwise. This paper proposes a novel graph-based optimisation algorithm for estimating either a static or a temporally varying neighbourhood matrix for the data that better represents its spatial correlation structure, by viewing the areal units as the vertices of a graph and the neighbour relations as the set of edges. The improved estimation performance of our methodology compared to the commonly used border sharing rule is evidenced by simulation, before the method is applied to a new respiratory disease surveillance study in Scotland between 2011 and 2017.
Read full abstract