Abstract
Disease mapping studies have found wide applications within geographical epidemiology and public health and are typically analysed within a Bayesian hierarchical model formulation. The most popular disease mapping model is the Besag-York-Molli´e model. A distinguishing feature of this model is the use of two sets of random effects: one spatially structured to model spatial autocorrelation and the other spatially unstructured to describe residual unstructured heterogeneity. Very often the spatially unstructured random effect is assumed to be normally distributed. Under practical situations, this normality assumption is found to be over restrictive. In this study, we investigate a more robust spatially unstructured random effect distribution by considering the Inverse Gaussian (IG) distribution in the disease mapping problem. The distribution has the normal distribution as special case. The inferences under this model are carried out within a bayesian hierarchical model formulation implemented in WinBUGS. The IG distribution is introduced in WinBUGS using zero tricks. The usefulness of the proposed model is investigated with a simulation study and applied in real data; mapping HIV in Kenya. In this work we showed that the IG distribution can produce better results when the normality assumption is violated due to the skewness of the data. For the case of data in which the random effects are truly normal, the IG distribution adjusts to a normal distribution as dictated by the data itself. On the other hand, the spatially structured random effect is normally modelled using the intrinsic conditional autoregressive (iCAR) prior. This prior is improper and has the undesirable large scale property of leading to a negative pairwise correlation for regions located further apart. In addition, the BYM model presents some identifiability problems of the spatial and non-spatial effects. In this work, we consider Leroux CAR (named lCAR hereafter) prior, a less widely used prior in disease mapping, as the prior distribution for the spatially structured random effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: American Journal of Theoretical and Applied Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.