The effective management and conservation of forest resources hinge on accurate monitoring. Nonetheless, individual remote-sensing images captured by low-altitude unmanned aerial vehicles (UAVs) fail to encapsulate the entirety of a forest’s characteristics. The application of image-stitching technology to high-resolution drone imagery facilitates a prompt evaluation of forest resources, encompassing quantity, quality, and spatial distribution. This study introduces an improved SIFT algorithm designed to tackle the challenges of low matching rates and prolonged registration times encountered with forest images characterized by dense textures. By implementing the SIFT-OCT (SIFT omitting the initial scale space) approach, the algorithm bypasses the initial scale space, thereby reducing the number of ineffective feature points and augmenting processing efficiency. To bolster the SIFT algorithm’s resilience against rotation and illumination variations, and to furnish supplementary information for registration even when fewer valid feature points are available, a gradient location and orientation histogram (GLOH) descriptor is integrated. For feature matching, the more computationally efficient Manhattan distance is utilized to filter feature points, which further optimizes efficiency. The fast sample consensus (FSC) algorithm is then applied to remove mismatched point pairs, thus refining registration accuracy. This research also investigates the influence of vegetation coverage and image overlap rates on the algorithm’s efficacy, using five sets of Cyclobalanopsis natural forest images. Experimental outcomes reveal that the proposed method significantly reduces registration time by an average of 3.66 times compared to that of SIFT, 1.71 times compared to that of SIFT-OCT, 5.67 times compared to that of PSO-SIFT, and 3.42 times compared to that of KAZE, demonstrating its superior performance.