Abstract

Shepard's universal law of generalization is a remarkable hypothesis about how intelligent organisms should perceive similarity. In its broadest form, the universal law states that the level of perceived similarity between a pair of stimuli should decay as a concave function of their distance when embedded in an appropriate psychological space. While extensively studied, evidence in support of the universal law has relied on low-dimensional stimuli and small stimulus sets that are very different from their real-world counterparts. This is largely because pairwise comparisons-as required for similarity judgments-scale quadratically in the number of stimuli. We provide strong evidence for the universal law in a naturalistic high-dimensional regime by analyzing an existing data set of 214,200 human similarity judgments and a newly collected data set of 390,819 human generalization judgments (N = 2,406 U.S. participants) across three sets of natural images. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.