It is an open challenge for cloud database service providers to guarantee tenants' service-level objectives (SLOs) and enjoy high resource utilization simultaneously. In this work, we propose a novel system Tao to overcome it. Tao consists of three key components: (i) tasklet-based DAG generator, (ii) tasklet-based DAG executor, and (iii) SLO-guaranteed scheduler. The core concept in Tao is tasklet, a coroutine-based lightweight execution unit of the physical execution plan. In particular, we first convert each SQL operator in the traditional physical execution plan into a set of fine-grained tasklets by the tasklet-based DAG generator. Then, we abstract the tasklet-based DAG execution procedure and implement the tasklet-based DAG executor using C++20 coroutines. Finally, we introduce the SLO-guaranteed scheduler for scheduling tenants' tasklets across CPU cores. This scheduler guarantees tenants' SLOs with a token bucket model and improves resource utilization with an on-demand core adjustment strategy. We build Tao on an open-sourced relational database, Hyrise, and conduct extensive experimental studies to demonstrate its superiority over existing solutions.