Abstract

Power capping is an important technique for high-density servers to safely oversubscribe the power infrastructure in a data center. However, power capping is commonly accomplished by dynamically lowering the server processors’ frequency levels, which can result in degraded application performance. For servers that run important machine learning (ML) applications with Service-Level Objective (SLO) requirements, inference performance such as recognition accuracy must be optimized within a certain latency constraint, which demands high server performance. In order to achieve the best inference accuracy under the desired latency and server power constraints, this paper proposes OptimML, a multi-input-multi-output (MIMO) control framework that jointly controls both inference latency and server power consumption, by flexibly adjusting the machine learning model size (and so its required computing resources) when server frequency needs to be lowered for power capping. Our results on a hardware testbed with widely adopted ML framework (including PyTorch, TensorFlow, and MXNet) show that OptimML achieves higher inference accuracy compared with several well-designed baselines, while respecting both latency and power constraints. Furthermore, an adaptive control scheme with online model switching and estimation is designed to achieve analytic assurance of control accuracy and system stability, even in the face of significant workload/hardware variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call