The study objective was to investigate the effects of fluoride on intact parathyroid hormone (iPTH) secretion. Thyro-parathyroid complexes (TPC) from C3H (n = 18) and B6 (n = 18) mice were cultured in Ca<sup>2+</sup>-optimized medium. TPC were treated with 0, 250, or 500 µ<smlcap>M</smlcap> NaF for 24 h and secreted iPTH assayed by ELISA. C3H (n = 78) and B6 (n = 78) mice were gavaged once with distilled or fluoride (0.001 mg [F<sup>-</sup>]/g of body weight) water. At serial time points (0.5-96 h) serum iPTH, fluoride, total calcium, phosphorus, and magnesium levels were determined. Expression of genes involved in mineral regulation via the bone-parathyroid-kidney (BPK) axis, such as parathyroid hormone (Pth), calcium-sensing receptor (Casr), vitamin D receptor (Vdr), parathyroid hormone-like hormone (Pthlh), fibroblast growth factor 23 (Fgf23), α-Klotho (αKlotho), fibroblast growth factor receptor 1c (Fgf1rc), tumor necrosis factor 11 (Tnfs11), parathyroid hormone receptor 1 (Pth1r), solute carrier family 34 member 1 (Slc34a1), solute carrier 9 member 3 regulator 1 (Slc9a3r1), chloride channel 5 (Clcn5), and PDZ domain-containing 1 (Pdzk1), was determined in TPC, humeri, and kidneys at 24 h. An in vitro decrease in iPTH was seen in C3H and B6 TPC at 500 µ<smlcap>M</smlcap> (p < 0.001). In vivo levels of serum fluoride peaked at 0.5 h in both C3H (p = 0.002) and B6 (p = 0.01). In C3H, iPTH decreased at 24 h (p < 0.0001), returning to baseline at 48 h. In B6, iPTH increased at 12 h (p < 0.001), returning to baseline at 24 h. Serum total calcium, phosphorus, and magnesium levels did not change significantly. Pth, Casr,αKlotho,Fgf1rc,Vdr, and Pthlh were significantly upregulated in C3H TPC compared to B6. In conclusion, the effects of fluoride on TPC in vitro were equivalent between the 2 mouse strains. However, fluoride demonstrated an early strain-dependent effect on iPTH secretion in vivo. Both strains demonstrated differences in the expression of genes involved in the BPK axis, suggesting a possible role in the physiologic handling of fluoride.
Read full abstract