The validity and the range of applicability of the classical plate theory (CPT) and the first-order shear deformation plate theory, also called Mindlin plate theory (MPT), in comparison with three-dimensional (3-D) p-Ritz solution are presented for freely vibrating circular plates on the elastic foundation with different boundary conditions. In order to achieve this purpose, a study of the 3-D elasticity solution is carried out to determine the free vibration frequencies of clamped, simply supported and free circular plates resting on an elastic foundation. The Pasternak model with adding a shear layer to the Winkler model is used for describing the elastic foundation. In addition to being employed the p-Ritz algorithm, the analysis is based on the linear, small strain and 3-D elasticity theory. In this analysis method, a set of orthogonal polynomial series in a cylindrical polar coordinate system is used to arrive eigenvalue equation yielding the natural frequencies for the circular plates. The accuracy of these results is verified by appropriate convergence studies and checked with the available literature and the MPT. Furthermore, the effect of the foundation stiffness parameters, thickness-radius ratio, and different boundary conditions on the ill-conditioning of the mass matrix as well as on the vibration behavior of the circular plates is investigated. Afterwards, the validity and the range of applicability of the results obtained on the basis of the CPT and MPT for a thin and moderately thick circular plate with different values of the foundation stiffness parameters are graphically presented through comparing them with those obtained by the present 3-D p-Ritz solution. Finally, the phenomenon of mode shape switching is investigated in graphical forms for a wide range of the Winkler foundation stiffness parameters.
Read full abstract