Abstract

In this paper, we analyse the stability of parallel algorithms for the evaluation of polynomials written as a finite series of orthogonal polynomials. The basic part of the computation is the solution of a triangular tridiagonal linear system. This fact allows us to present a more detailed analysis. The theoretical results show that the parallel algorithms are almost as stable as their sequential counterparts for practical applications. Extensive numerical experiments confirm the theoretical conclusions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.