The reversibility of the transfer of energy from the magnetic field to the surrounding plasma during magnetic reconnection is examined. Trajectories of test particles in an analytic field model demonstrate that irreversibility is associated with separatrix crossings and passages through regions of weaker magnetic field. Inclusion of a guide field enhances the magnetization of particles and the extent to which forward and reverse trajectories overlap. Full kinetic simulations with a particle-in-cell code support these results and demonstrate that while time-reversed simulations at first “un-reconnect,” they eventually evolve into a reconnecting state.
Read full abstract