Abstract
Ripples in magnetic or electrostatic confinement fields give rise to trapping separatrices, and conventional neoclassical transport theory describes the collisional trapping/detrapping of particles with fractured distribution function. Our experiments and novel theory have now characterized a new kind of neoclassical transport processes arising from chaotic (nominally collisionless) separatrix crossings, which occur due to E × B plasma rotation along θ−ruffled or wave-perturbed separatrices. This chaotic neoclassical transport becomes dominant at low collisionality when the collisional spreading of particle energy during the dynamical period is less than the separatrix energy ruffle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.