Abstract

Axial variations in magnetic or electrostatic confinement fields create local trapping separatrices, and traditional neo-classical theory analyzes the effects from collision-induced separatrix crossings. Recent experiments and theory have characterized the distinctive neo-classical effects from chaotic separatrix crossings, induced by equilibrium plasma rotation across θ-ruffled separatrices, or by wave-induced separatrix fluctuations. Experiments on nominally-symmetric pure electron plasmas with controlled separatrices agree quantitatively with theory in 3 broad areas: 1) radial particle transport is driven by a static z- and θ-asymmetry; 2) both E × B drift waves and Langmuir waves are damped; and 3) novel dissipative wave-wave couplings are observed. The new chaotic neo-classical effects scale as ν0B-1, whereas traditional plateau-regime collisional effects scale as ν1/2B-1/2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.