Abstract
Metal foil pumps (MFPs) are key components in the direct internal recycling inner fuel cycle loop for the recovery of hydrogen isotopes from deuterium-tritium fusion exhaust. Operating under vacuum conditions, they utilize superthermal hydrogen as the feed gas in a process called superpermeation. A notable feature of MFPs is their ability to pump against a pressure gradient. This study examines the compression capabilities of PdAg and PdCu MFPs at low temperatures with a constant feed pressure of 10 Pa. At 75°C, compression ratios exceeding 200 were readily achieved, with downstream pressures exceeding 4500 Pa using PdCu. For both alloys, net fluxes decreased by only ~15% at downstream pressures of 1000 Pa, which offers potential simplifications for the downstream pump train. Performance declined markedly when the temperature was elevated to 200°C. Pump curves were constructed and advocated as the most appropriate manner to assess MFP performance. Separate pressure-driven-permeation experiments at relevant conditions were conducted, providing a direct measurement of the hydrogen dissociation constant k d , which was found to be in good agreement with the previous literature. These measurements were used to predict pump curves and maximum compression ratios by balancing superpermeation with pressure-driven permeation, achieving excellent agreement with experiment. Last, experiments using asymmetric MFPs revealed the detrimental impact that surface impurities have on performance in this system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.