A disposable microfluidic channel sensor printed on a plastic platform was developed to analyze heavy metal ions (HMIs) as a model target species. Precise separation and detection of multiple targets were established by symmetrically applying a small AC potential on the carbon channel walls to induce an electrodynamic force. The separation device was constructed by covering it with a plastic lid to achieve capillary action in the channel. The sample flow rate was regulated by the hydrophilicity of the lid plastic and electrodynamic convection by the AC field, which was characterized by the contact angle measurement and the additional electrodynamic force. The flow variables and their relevance to the capillary phenomena were demonstrated, and the analytical parameters were optimized. The working electrode was modified with poly(diamino terthiophene) anchored with nanosized graphene oxide (pDATT/GO) to enhance the detection performance. The experimental variables for separating and detecting the target species were optimized according to the AC frequency and amplitude, sample flow rate, electrolytes, pH, temperature, and applied potential for detection. The linear dynamic ranges were between 0.1 and 200.0 ppb, with detection limits of 0.04 ± 0.023, 0.29 ± 0.05, 0.07 ± 0.011, and 0.14 ± 0.06 ppb for Cu2+ Cd2+, Hg2+, and Pb2+, respectively. Finally, the reliability of the proposed method was evaluated through analysis of HMIs in real water samples. The results were matched to those obtained through parallel analysis using ICP-MS at a 95% confidence level.