Abstract

A frozen aqueous solution was integrated into a microfluidic device as a size-tunable separation field for the size-selective separation of micro/nanospheres. The width of the ice grain boundaries formed in frozen aqueous solutions could be altered by controlling the operating temperature. A freezing chamber was placed adjacent to the microfluidic channel. A sample-dispersing aqueous sucrose solution was injected into the chamber and frozen, allowing the freeze-concentrated solution (FCS) to run vertically to the microfluidic channel, where the eluting solution flows. The operating temperature can be used to control the physical interaction between the ice wall and micro/nanospheres, enabling size-selective migration. The eluted micro/nanospheres in the microchannel were passed through the eluting solution collected from the outlet. We achieved size-selective separation and collection of microspheres and nanospheres. We separated the exosomes and yeast cells to demonstrate their applicability in bioseparation. The present method is suitable not only for size-selective separation but also for evaluating the biological expression of extracellular vesicles under cryogenic conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.