Membranes are a potential technology to reduce energy consumption as well as environmental challenges considering the separation processes. A new class of this technology, namely mixed matrix membrane (MMM) can be fabricated by dispersing solid substances in a polymeric medium. In this way, the poly(4-methyl-1-pentene)-based MMMs have attracted great attention to capturing carbon dioxide (CO2), which is an environmental pollutant with a greenhouse effect. The CO2 permeability in different MMMs constituted of poly(4-methyl-1-pentene) (PMP) and nanoparticles was comprehensively analyzed from the experimental point of view. In addition, a straightforward mathematical model is necessary to compute the CO2 permeability before constructing the related PMP-based separation process. Hence, the current study employs multilayer perceptron artificial neural networks (MLP-ANN) to relate the CO2 permeability in PMP/nanoparticle MMMs to the membrane composition (additive type and dose) and pressure. Accordingly, the effect of these independent variables on CO2 permeability in PMP-based membranes is explored using multiple linear regression analysis. It was figured out that the CO2 permeability has a direct relationship with all independent variables, while the nanoparticle dose is the strongest one. The MLP-ANN structural features have efficiently demonstrated an appealing potential to achieve the highest accurate prediction for CO2 permeability. A two-layer MLP-ANN with the 3-8-1 topology trained by the Bayesian regulation algorithm is identified as the best model for the considered problem. This model simulates 112 experimentally measured CO2 permeability in PMP/ZnO, PMP/Al2O3, PMP/TiO2, and PMP/TiO2-NT with an excellent absolute average relative deviation (AARD) of lower than 5.5%, mean absolute error (MAE) of 6.87 and correlation coefficient (R) of higher than 0.99470. It was found that the mixed matrix membrane constituted of PMP and TiO2-NT (functionalized nanotube with titanium dioxide) is the best medium for CO2 separation.
Read full abstract