Abstract

Universal separation strategies are the ultimate goal in separation science. However, there is always a tradeoff between universality and selectivity due to the negative influence among different recognition domains. With the goal of universal separation in mind, an unprecedented, switchable, and versatile separation strategy using reversible supramolecular host-guest interactions has been developed. These adjustable separation mediums were prepared using surface-grafted cationic cyclodextrin to firmly bind negatively charged adamantane derivatives. By changing guest structures, the surface functionality of the separation medium can be precisely regulated to be selective for a variety of substrates including chiral or achiral molecules, thus producing satisfactory single-column universality. This method offers a new approach to move beyond conventional separation methodologies and should stimulate the design of switchable functional materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call