Context: There is accumulating evidence that the metabolism of several trace elements like Cr, Cu, Pb, Cd, Co, Mn and Zn might have specific roles in the pathogenesis and progress of many diseases like hypertension (HTN) and diabetes mellitus (DM). Objectives: To provide a fast, efficient, sensitive, and reliable analytical procedure for trace element determination in urine samples of HTN and DM patients using inductively coupled plasma optical emission spectrometry (ICP-OES). Setting and Design: The ICP-OES operating conditions were optimised and carefully selected in order to maximise the sensitivity, precision and accuracy. Factors affecting analytical and biological variability of the concentrations under study were discussed and carefully optimised. Materials and Methods: Different digestion procedures with acids and oxidising reagents were tested. The suitable procedure ICP-OES was selected, carefully modified and applied. The validity and accuracy of the different elements were determined by spiking of samples with known amounts of multi-element standard solution. Statistical Analysis: Student t-test and analysis of variance (ANOVA) test were used for analysis. Microsoft Excel was used to assess the significance of the difference between variables. The concentrations obtained were expressed as mean value ± standard deviation (P = 0.05). Results: The results of this study showed that the mean concentrations of Cd, Zn, Pb, Cu, Cr and Mn in urine from both HTN (study group A) and DM (study group B) patients were higher than the corresponding values observed in the control group. However, while the mean value of Co was low as compared to the control group, the differences found were not significant (P = 0.05). Conclusion: The method used had excellent sensitivity, multi-element data could be obtained with very short acquisition time. The elements Cr, Cd, Pb and Zn might have specific roles in the pathogenesis and progress of HTN and DM. Further studies are required to investigate the possible roles of these elements in HTN and DM individuals.
Read full abstract