AbstractLet p, q be prime numbers with p2 < q, n ∊ ℕ, and H a semisimple Hopf algebra of dimension pqn over an algebraically closed field of characteristic 0. This paper proves that H must possess one of the following two structures: (1) H is semisolvable; (2) H is a Radford biproduct R#kG, where kG is the group algebra of group G of order p and R is a semisimple Yetter–Drinfeld Hopf algebra in of dimension qn.
Read full abstract