Abstract

Let H be a semisimple (so, finite dimensional) Hopf algebra over an algebraically closed field k of characteristic zero and let A be a commutative domain over k. We show that if A arises as an H-module algebra via an inner faithful H-action, then H must be a group algebra. This answers a question of E. Kirkman and J. Kuzmanovich and partially answers a question of M. Cohen.The main results of this article extend to working over k of positive characteristic. On the other hand, we obtain results on Hopf actions on Weyl algebras as a consequence of the main theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.