On-site routine inspection often remains a manual operation in the semiconductor manufacturing industry because implementing automated solutions can be costly and technically challenging in such a highly controlled and complex environment. The manual inspection is prone to errors due to the impact of demanding physical and mental workloads. This paper presents an integrated Augmented Reality (AR) solution developed to assist manual inspection tasks in the supporting areas of semiconductor manufacturing, referred to as the sub-fab. The solution is accessible to a human worker wearing an AR headset during the inspection process at the location. We propose a system framework to deploy computational intelligences of varying granularity provided by the solution across cloud, edge, and device levels, accommodating constraints within the sub-fab. A machine maintenance module helps estimate and monitor the health condition of running scrubbers. Incorrect intentions performed by the worker on the scrubber control panel are detected through hand gesture recognition. This instantly prompts warning messages in the AR headset to prevent subsequent wrong actions. The solution can also identify abnormal device states through 6D pose estimation of objects enabled by machine learning models. A test scenario demonstrates how these functional features enhance the inspection efficiency and quality by reducing human workloads. This work demonstrates that semiconductor manufacturing may require AR-assisted functions different from those needed or common in other industrial sectors. It also highlights the potential of AR technology for reducing operational human errors in manual tasks.
Read full abstract