Anthracene and its derivatives are widely utilized in optoelectronic devices due to their unique properties. Generally, single-crystal structures can avoid non-radiative recombination, enhance carrier mobility, and ultimately improve device performance. In this work, anthracene microcrystals were prepared using the micro-space sublimation method. Through real-time in-situ observation, the crystallization dynamics of anthracene molecules were revealed. Unlike traditional vacuum evaporation deposition technique, the close proximity of the substrate to the source facilitates the self-assembly of anthracene molecules into an ordered crystal structure. Six peaks can be observed in the photoluminescence spectrum, corresponding to various lowest excited state decay processes. The fluorescence intensity at the peak of 423 nm decreases significantly with increasing temperature. The reason for this is the relatively high exciton binding energy, which makes excitons more stable and easier to form. The lattice vibrations induced by increased temperature were found to affect the transport and separation of excitons. Time-resolved fluorescence spectroscopy imaging revealed that a relatively uniform distribution of fluorescence lifetimes in the anthracene microcrystals, indicating high crystallization quality. This work provides valuable insights for controlling the morphology and investigating the photophysical properties of organic semiconductors.
Read full abstract