In degraded agricultural soils, organic C levels can be increased and conserved by adopting alternative management strategies such as no-tillage and increased cropping intensity. However, soil microbial community responses to increased soil organic C (SOC) may be constrained due to water limitations in semi-arid dryland agroecosystems. The purpose of this study was to assess SOC, microbial biomass C (MBC) and community ester-linked fatty acid methyl ester (EL-FAME) composition under winter wheat (Triticum aestivum L.) in no-till systems of wheat–corn (Zea mays L.)–fallow (WCF), wheat–wheat–corn–millet (Panicum miliaceum L.) (WWCM), wheat–corn–millet (WCM), opportunity cropping (OPP), and perennial grass across a potential evapotranspiration gradient in eastern Colorado. Rotations of WWCM and OPP, in which crops are chosen based on available soil water at the time of planting rather than according to a predetermined rotation schedule, increased levels of SOC to those measured under perennial grass. However, MBC under OPP cropping accounted for the smallest fraction (2.0–3.6%) of SOC compared to other systems, in which MBC ranged from 2.4 to 6.3% of SOC. Microbial community structure was most divergent between OPP-cropped and perennial grass soils, whereas few differences were observed among microbial communities of the WCF, WCM, and WWCM rotations. Compared to perennial grass and other cropping systems, microbial biomass in OPP-cropped soil was low and contained less of the arbuscular mycorrhizal fungal biomarker 16:1ω5c. Microbial stress, as indicated by the ratio of 17:0 cy to 16:1ω7c, was greatest under OPP and WCF cropping. In contrast, soils under perennial grass contained lower ratios of bacterial:fungal EL-FAMEs and higher levels of MBC, ratios of MBC:SOC, and relative abundances of 16:1ω5c. Across locations, SOC and moisture content increased as soil texture became finer, whereas trends in MBC and community structure followed the potential evapotranspiration gradient. Soil from the high potential evapotranspiration site contained the lowest level of MBC but greater relative amounts of 16:1ω5c and lower ratios of stress indicator and bacterial:fungal EL-FAMEs compared to soil located at the moderate and low potential evapotranspiration sites. Indistinct microbial communities under WCF, WCM, and WWCM could be explained by EL-FAME limitations to detecting slight differences in microbial community structure or to the overwhelming response of microbial communities to environmental rather than management conditions. Further research is needed to assess potential legacy effects of long-term agricultural management that may mask microbial responses to recent management change, as well as to identify conditions that lead to high microbial community resiliency in response to management so that communities are similar under a given crop despite different preceding crops.
Read full abstract