It was conjectured by Černý in 1964, that a synchronizing DFA on [Formula: see text] states always has a synchronizing word of length at most [Formula: see text], and he gave a sequence of DFAs for which this bound is reached. Until now a full analysis of all DFAs reaching this bound was only given for [Formula: see text], and with bounds on the number of symbols for [Formula: see text]. Here we give the full analysis for [Formula: see text], without bounds on the number of symbols. For PFAs (partial automata) on [Formula: see text] states we do a similar analysis as for DFAs and find the maximal shortest synchronizing word lengths, exceeding [Formula: see text] for [Formula: see text]. Where DFAs with long synchronization typically have very few symbols, for PFAs we observe that more symbols may increase the synchronizing word length. For PFAs on [Formula: see text] states and two symbols we investigate all occurring synchronizing word lengths. We give series of PFAs on two and three symbols, reaching the maximal possible length for some small values of [Formula: see text]. For [Formula: see text], the construction on two symbols is the unique one reaching the maximal length. For both series the growth is faster than [Formula: see text], although still quadratic. Based on string rewriting, for arbitrary size we construct a PFA on three symbols with exponential shortest synchronizing word length, giving significantly better bounds than earlier exponential constructions. We give a transformation of this PFA to a PFA on two symbols keeping exponential shortest synchronizing word length, yielding a better bound than applying a similar known transformation. Both PFAs are transitive. Finally, we show that exponential lengths are even possible with just one single undefined transition, again with transitive constructions.