Abstract

Verifying safety and liveness over array systems is a highly challenging problem. Array systems naturally capture parameterized systems such as distributed protocols with an unbounded number of processes. Such distributed protocols often exploit process IDs during their computation, resulting in array systems whose element values range over an infinite domain. In this paper, we develop a novel framework for proving safety and liveness over array systems. The crux of the framework is to overapproximate an array system as a string rewriting system (i.e. over a finite alphabet) by means of a new predicate abstraction that exploits the so-called indexed predicates. This allows us to tap into powerful verification methods for string rewriting systems that have been heavily developed in the last two decades or so (e.g. regular model checking). We demonstrate how our method yields simple, automatically verifiable proofs of safety and liveness properties for challenging examples, including Dijkstra's self-stabilizing protocol and the Chang-Roberts leader election protocol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call