To improve the centroid extraction accuracy and efficiency of high-dynamic star sensors, this paper proposes a multi-centroid localization method based on the prior distribution of star trail projections. First, the mapping relationship between attitude information and star trails is constructed based on a geometric imaging model, and an endpoint centroid group extraction strategy is designed from the perspectives of time synchronization and computational complexity. Then, the endpoint position parameters are determined by fitting the star trail grayscale projection using a line spread function, and accurate centroid localization is achieved through principal axis analysis and inter-frame correlation. Finally, the effectiveness of the proposed method under different dynamic scenarios was tested using numerical simulations and semi-physical experiments. The experimental results show that when the three-axis angular velocity reaches 8°/s, the centroid extraction accuracy of the proposed method remains superior to 0.1 pixels, achieving an improvement of over 30% compared to existing methods and simultaneously doubling the attitude measurement frequency. This demonstrates the superiority of this method in high-dynamic attitude measurement tasks.
Read full abstract