Abstract

Geological drilling is an important means for exploration of the earth. Due to the nonlinearity and coupling, geological drilling is accompanied by low efficiency and safety, and difficult to accurately predict the drilling states. Moreover, the vertical well trajectory needs to follow the plumb line. A novel optimization method is proposed to solve these problems. First, working conditions are identified by fuzzy C-means clustering method and corresponding adjustment ranges of operating variables are refined for optimization. Meanwhile, support vector regression and hybrid bat algorithm are employed to construct reliable models for mud pit volume (MPV) and rate of penetration (ROP). Then, how to improve safety and efficiency is converted to a two-objective problem, that is to suppress MPV fluctuations and improve ROP with vertical well constraints. Nondominated sorting genetic algorithm II is invoked to solve this problem, and the appropriate solution is selected by two references points. Moreover, a short-time scale and long-time scale optimization strategy is introduced to cope with different adjustment interval of operating variables. Finally, the simulation results based on actual drilling data, application results in a semi-physical experiment system and comparison results from a vertical well verify the effectiveness and practicability for the developed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call