This paper investigates the contact problem of a layered elastic halfspace with transverse isotropy under the axisymmetric indentation of a circular rigid plate. Fourier integral transforms and a backward transfer matrix method are used to obtain the analytical solution of the contact problem. The interaction between the rigid plate and the layered halfspace can be expressed with the standard Fredholm integral equations of the second kind. The induced elastic field in the layered halfspace can be expressed as the semi-infinite integrals of four known kernel functions. The convergence and singularity of the semi-infinite integrals near or at the surface of the layered halfspace are resolved using an isolating technique. The efficient numerical algorithms are used and developed for accurately calculating the Fredholm integral equations and the semi-infinite integrals. Numerical results show the correctness of the proposed method and the effect of layering non-homogeneity on the elastic fields in layered transversely isotropic halfspace induced by the axisymmetric indentation of a circular rigid plate.
Read full abstract