Abstract

This article presents a semianalytical solution to a half-plane contact problem subjected to an arbitrarily distributed surface traction. The half-plane boundary is treated as a material surface of the Steigmann–Ogden type. Under the assumption of plane strain condition, the problem is formulated by coupling the methods of an Airy stress function and Fourier integral transforms. Stresses and displacements in the form of semi-infinite integrals are derived. A non-classical Flamant solution that is able to simultaneously account for the surface tension, membrane stiffness, and bending rigidity of the half-plane boundary is derived through limit analysis on the half-plane contact problem owing to a uniform surface traction. The fundamental Flamant solution is further integrated for tackling two half-plane contact problems owing to classical contact pressures corresponding to a rigid cylindrical roller and a rigid flat-ended punch. The resultant semi-infinite integrals are integrated by the joint use of the Gauss–Legendre numerical quadrature and the Euler transformation algorithm. Extensive parametric studies are conducted for comparing and contrasting the effects of Gurtin–Murdoch and Steigmann–Ogden surface mechanical models. The major observations and conclusions are two-fold. First, the introduction of either surface mechanical model results in size-dependent elastic fields. Second, the incorporation of the curvature-dependent nature of the half-plane boundary leads to bounded stresses and displacements in the fundamental Flamant solution. This is in contrast to the otherwise singular classical and Gurtin–Murdoch solutions. For all four case studies, the Steigmann–Ogden surface model also results in much smoother displacement and stress variations, indicating the significance of surface bending rigidity in nanoscale contact problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.