The results of Monte Carlo calculations of radiative transfer through a semi-infinite plane-parallel atmosphere of resonant scatterers are presented. With a photon source at optical depth tau/sub ES/ we model the semi-infinite geometry by embedding a perfectly reflecting mirror at depth tau/sub MS/+tau/sub ES/. Although some quantities characterizing the emergent photons diverge as tau/sub MS/..-->..infinity, the mean number of scatters, N/sub ES/, and path length, L/sub ES/, accumulated between the source and the edge of the atmosphere converge. Accurate results of N/sub ES/, L/sub ES/, X/sub pk/, the most probable frequency shift of the escaping photons, and tau/sub LAST/, the mean optical depth at which they last scatter, are obtained by choosing tau/sub MS/ = 4tau/sub ES/. Approximate analytic calculations of N/sub ES/, L/sub ES/, N, the mean total number of scatters undergone by escaping photons, L, their mean total path length, and , their mean (absolute) frequency shift, are presented for a symmetric slab with ..cap alpha..tau/sub ES/>>1 and tau/sub MS/>>tau/sub ES/. Analogous calculations for an asymmetric slab are discussed. Analytic fitting formulae for N/sub ES/, L/sub ES/, X/sub pk/, and tau/sub LAST/ are given.
Read full abstract