We consider the stability problem of inviscid compressible axial flows with axial magnetic fields following the work of Dandapat and Gupta (Quarterly of Applied Mathematics, 1975). A numerical study of the stability of some basic flows has been carried out and it is found that an increase in the magnetic field strength has a stabilizing effect on subsonic flows and a destabilizing effect on supersonic flows. An analytical study of the stability problem has also been done in the present paper, but this analytical study is restricted by the approximation <svg style="vertical-align:-0.04095pt;width:49.612499px;" id="M1" height="11.225" version="1.1" viewBox="0 0 49.612499 11.225" width="49.612499" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.113)"><path id="x1D440" d="M998 650l-8 -28q-71 -4 -86 -16t-22 -69l-50 -397q-3 -28 -4.5 -44t2 -29t6.5 -18.5t17 -10.5t24.5 -6.5t37.5 -3.5l-8 -28h-271l7 28q63 6 78 22t25 90l60 415h-2l-353 -552h-23l-130 536h-2l-70 -254q-44 -158 -47 -188q-5 -38 9 -51t71 -18l-6 -28h-241l8 28
q45 4 67 18.5t35 45.5q16 38 74 233l52 173q24 79 11.5 98t-89.5 26l6 28h177l136 -508l337 508h172z" /></g><g transform="matrix(.017,-0,0,-.017,22.127,11.113)"><path id="x226A" d="M512 -3l-437 233v51l437 233v-58l-378 -200v-2l378 -199v-58zM780 -3l-437 233v51l437 233v-58l-378 -200v-2l378 -199v-58z" /></g><g transform="matrix(.017,-0,0,-.017,41.386,11.113)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g> </svg> and <svg style="vertical-align:-3.3907pt;width:43.037498px;" id="M2" height="15.1375" version="1.1" viewBox="0 0 43.037498 15.1375" width="43.037498" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,10.862)"><path id="x1D450" d="M383 397q0 -32 -35 -49q-12 -6 -23 8q-37 45 -84 45t-90 -71q-40 -65 -40 -167q0 -57 22 -86t59 -29q38 0 81.5 24.5t69.5 51.5l16 -21q-44 -53 -104 -84t-109 -31q-56 0 -89.5 41t-33.5 117q0 61 30 124t79 105q33 28 81 50.5t86 22.5q34 0 59 -15.5t25 -35.5z" /></g> <g transform="matrix(.012,-0,0,-.012,6.962,14.938)"><path id="x1D456" d="M244 607q0 -25 -15.5 -43t-37.5 -18q-19 0 -32 13t-13 35q0 21 15 41t39 20q20 0 32 -14t12 -34zM222 91q-29 -33 -79 -68t-75 -35q-13 0 -19 7.5t-6 31t10 65.5l62 253q5 26 -1 26q-21 0 -72 -43l-13 24q43 40 91 68t71 28q30 0 10 -78l-71 -274q-8 -30 3 -30
q16 0 76 48z" /></g> <g transform="matrix(.017,-0,0,-.017,15.563,10.862)"><use xlink:href="#x226A"/></g><g transform="matrix(.017,-0,0,-.017,34.805,10.862)"><use xlink:href="#x31"/></g> </svg>, where <svg style="vertical-align:-0.0pt;width:17.475px;" id="M3" height="11.175" version="1.1" viewBox="0 0 17.475 11.175" width="17.475" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.113)"><use xlink:href="#x1D440"/></g> </svg> is the Mach number and <svg style="vertical-align:-3.3907pt;width:10.9px;" id="M4" height="11.9625" version="1.1" viewBox="0 0 10.9 11.9625" width="10.9" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,7.675)"><use xlink:href="#x1D450"/></g> <g transform="matrix(.012,-0,0,-.012,6.962,11.762)"><use xlink:href="#x1D456"/></g> </svg> is the imaginary part of the complex phase velocity <svg style="vertical-align:-0.1638pt;width:7.0250001px;" id="M5" height="7.9499998" version="1.1" viewBox="0 0 7.0250001 7.9499998" width="7.0250001" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,7.675)"><use xlink:href="#x1D450"/></g> </svg>. A semicircular region depending on the magnetic field parameter and the Mach number is found for subsonic disturbances and as a consequence it is found that sufficiently strong magnetic field stabilizes all subsonic disturbances. Under a weak magnetic field, it is shown that short subsonic disturbances are stable.
Read full abstract