Abstract

Space radiation in the form of Solar Energetic Protons (SEPs) and Galactic Cosmic Rays (GCR) poses a substantial risk for long-duration space exploration. Active shielding concepts, i.e. shielding a spacecraft with electric and or magnetic fields, has been a topic of interest for more than 50 years. Mass and power requirements have yet to be fulfilled to enable active shielding technology. We present results for a single electric dipole to show the utility of scale-invariance and universal scaling for advancing active shielding concepts. Scattering patterns downstream from the dipole of 2 MeV to 6 MeV electrons and protons show a semi-circular region devoid of incident particles that increases in size with increasing dipole voltage. In particular, results are presented that show how scale-invariant approaches can be leveraged to enable small-scale shields to be built and tested on the ground and then scaled up for in-space use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call