Defining myocardial contours is often the most time-consuming portion of dynamic cardiac MRI image analysis. Displacement encoding with stimulated echoes (DENSE) is a quantitative MRI technique that encodes tissue displacement into the phase of the complex MRI images. Cine DENSE provides a time series of these images, thus facilitating the non-invasive study of myocardial kinematics. Epicardial and endocardial contours need to be defined at each frame on cine DENSE images for the quantification of regional displacement and strain as a function of time. This work presents a reliable and effective two-dimensional semi-automated segmentation technique that uses the encoded motion to project a manually-defined region of interest through time. Contours can then easily be extracted for each cardiac phase. This method boasts several advantages, including, (1) parameters are based on practical physiological limits, (2) contours are calculated for the first few cardiac phases, where it is difficult to visually distinguish blood from myocardium, and (3) the method is independent of the shape of the tissue delineated and can be applied to short- or long-axis views, and on arbitrary regions of interest. Motion-guided contours were compared to manual contours for six conventional and six slice-followed mid-ventricular short-axis cine DENSE datasets. Using an area measure of segmentation error, the accuracy of the segmentation algorithm was shown to be similar to inter-observer variability. In addition, a radial segmentation error metric was introduced for short-axis data. The average radial epicardial segmentation error was 0.36+/-0.08 and 0.40+/-0.10 pixels for slice-followed and conventional cine DENSE, respectively, and the average radial endocardial segmentation error was 0.46+/-0.12 and 0.46+/-0.16 pixels for slice following and conventional cine DENSE, respectively. Motion-guided segmentation employs the displacement-encoded phase shifts intrinsic to DENSE MRI to accurately propagate a single set of pre-defined contours throughout the remaining cardiac phases.