A ditopic Schiff base ligand, H2L has been synthesized and characterized by all spectroscopic techniques. It is highly selective and specific towards Al3+ in semi aqueous medium (DMF/H2O mixture) by exhibiting a drastic increase in the fluorescence intensity. The emission studies, spectroscopic data, life time and quantum yield results have been used to understand its binding mode, explore its specificity and establish its efficacy. The intensity difference is remarkable in physiological pH range. Due to its reversible behavior this ditopic fluorescent chemosensor can be used multiple times to make it cost effective. Detection limit for this chemosensor was found to be 0.65μM. Experiments with TLC plates show that it can be used as a practical and portable sensor for studying environmental samples in real life. The L-Al3+ complex generated in the solution acts as a sensor to sequentially detect pyrophosphate groups present in inorganic pyrophosphates, ATP and ADP among other anions by turning off the fluorescence. Inhibit logic gate and its corresponding truth table has been developed to aid in further exploiting its multidimensional applications.
Read full abstract