This paper investigates the self-triggered control for stabilizing an n-dimensional linear time-invariant system under communication constraints, including finite bit rates and transmission delay. The concerned system is further perturbed by bounded process noise. To resolve these issues, a self-triggering strategy is proposed. Specifically the proposed self-triggering strategy selects the next sampling time from a set of pre-designed time instants based on the sampled system states. By fully exploiting the encoded information of receive time instants of feedback packets, we can achieve the desired input-to-state stability (ISS) at a lower bit rate than that of periodic sampling. Moreover, the proposed self-triggering strategy is free of the burdens of continuously monitoring the system state compared with event-triggered sampling strategies. The efficiency of the proposed self-triggering strategy is further confirmed by simulations.
Read full abstract