Abstract

This paper proposes a hybrid aperiodic sampled-data mechanism for the control of interconnected subsystems with time-delay. The proposed aperiodic sampled-data mechanism comprises of two stages. In the first stage, the next sampling instant for each subsystem is computed using self-triggering strategy. Thereafter, in the second stage, an event-triggering condition is checked at these sampling instants for each subsystem and signal is transmitted to the controller only if the event-triggering condition is violated. Further, to reduce the computational complexity involved in the proposed triggering mechanism, another triggering mechanism with integrated event-triggering and self-triggering is developed. Also, an upper bound on delay for each subsystem is computed to ensure the stability of distributed networked control system. The results proposed are validated using a simulation example. A comparison of the proposed technique with other triggering mechanisms in terms of sampling instants, number of transmissions to the controller, maximum delay bound and other performance measures is drawn through simulation example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.