Nanoparticles of barium europium zirconate, a complex perovskite oxide, were synthesized using a modified self-propagating combustion synthesis. The solid combustion products thus obtained were characterized by x-ray and electron diffraction, differential thermal analysis, thermogravimetric analysis, infrared spectroscopy, particle-size analysis, surface area determination, gas adsorption studies, and high-resolution transmission electron microscopy. According to the results of the x-ray and electron diffraction, as-prepared powder showed the single phase of barium europium zirconate (Ba2EuZrO5.5) without another phase and had a complex cubic perovskite (A2BB′O6) structure. The transmission electron microscopic investigation showed a mean grain size of 38 nm with a standard deviation of 12 nm. High-resolution lattice imaging of the nanoparticles indicated the possibility of finer crystallite in the particle having the same orientation. The nanoparticles of Ba2EuZrO5.5 obtained by the present method could be sintered to 97% theoretical density at a relatively low temperature of 1525 °C.
Read full abstract