Abstract

A series of computer experiments was conducted for the self-propagating combustion synthesis process in the Nb-C system, based on the general theoretical model that was developed previously.1A detailed and quantitative description was given for the various physical and chemical processes that take place during the combustion synthesis process. The results are presented at various length scales in order to provide an insight into understanding the mechanisms that are responsible for the self-propagating behavior. It was shown that a fundamental understanding and precise control of the process require a strong emphasis on the joint contributions of theratesof the various mass and energy redistribution processes that occur during the combustion synthesis process. A proper balance of each of the elementary process rates must be achieved to give rise to self-propagating behavior. This paper illustrates some of the capabilities of the general theoretical model in quantitatively describing the self-propagating combustion synthesis process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.