As wind energy proliferates in onshore and offshore applications, it has become significantly important to predict wind turbine downtime and maintain operation uptime to ensure maximal yield. Two types of data systems have been widely adopted for monitoring turbine health condition: supervisory control and data acquisition (SCADA) and condition monitoring system (CMS). Provided that research and development have focused on advancing analytical techniques based on these systems independently, an intelligent model that associates information from both systems is necessary and beneficial. In this paper, a systematic framework is designed to integrate CMS and SCADA data and assess drivetrain degradation over itslifecycle. Information reference and advanced feature extraction techniques are employed to procure heterogeneous health indicators. A pattern recognition algorithm is used to model baseline behavior and measure deviation of current behavior, where a Self-organizing Map (SOM) and minimum quantization error (MQE) method is selected to achieve degradation assessment. Eventually, the computation and ranking of component contribution to the detected degradation offers component-level fault localization. When validated and automated by various applications, the approach is able to incorporate diverse data resources and output actionable information to advise predictive maintenance with precise fault information. Theapproach is validated on a 3 MW offshore turbine, where an incipient fault is detected well before existing system shuts down the unit. A radar chart is used to illustrate the fault localization result.
Read full abstract