Considering the poor hydrolytic stability of the most methacrylate-based functional monomers of self-etch dental adhesives in acidic and aqueous conditions, in this study allyl-based photo-polymerizable self-etch monomers was synthesized in order to improve the hydrolytic stability.The new self-etch monomers based on phosphonic acid functional groups were synthesized through a two-step procedure. First, phosphoric anhydride, poly-phosphoric acid, and polyethylene glycol were reacted to produce phosphate ester precursor (P-PEG-P). Next, allyl 2, 3-epoxypropyl ether was reacted with P-PEG-P to synthesize allyl self-etch monomer. Glycidyl methacrylate was also reacted with P-PEG-P to synthesize a methacrylate self-etch analogue monomer. The monomers were characterized using FTIR and 1H-NMR spectroscopy. The viscosities of monomers were measured using a rheometer. The degree photopolymerization conversion of monomers was measured using FTIR spectroscopy. The pH assay was performed by a digital pH-meter. The etching behavior of the monomers on human teeth was studied using scanning electron microscopy (SEM). Thermo-gravimetric analysis (TGA) was performed to evaluate the possible interaction of the monomers with tricalcium phosphate (TCP). The solubility of synthesized monomers was examined in ethanol, acetone, and water. The hydrolytic stability of cured resins in artificial saliva during 4 months was also surveyed.The synthesis of new self-etching monomers was successfully confirmed by spectroscopy analyses. The results represented appropriate viscosity of self-etching monomers around 1 (Pa s). The resin containing methacrylate monomer exhibited its degree of conversion is more than that of allyl monomer (p < 0.05). The allyl and methacrylate self-etch monomers exhibited pH values of 1.2 and 1.3, respectively. SEM micrograph verified that the synthesized monomers were able to suitable etching of the enamel human premolar teeth. The data obtained from TGA tests revealed that thermal stability of (TCP) containing monomers is enhanced. Also, the monomers exhibited an excellent solubility in polar solvents, but when they are mixed with TCP, they are not, anymore, dissolved in these solvents. Furthermore, the allyl monomer showed higher hydrolytic stability than the methacrylate monomer.The new photo-polymerizable acidic monomer based on allyl functionality showed enhanced hydrolytic stability compared to methacrylate-based monomer. It may be considered as a promising monomer for self-etch dental adhesives.