Abstract

ObjectivesThe objective of this study is to value the long-term antibacterial capability and adhesive properties of one-step self-etching dental adhesive containing silver nanoparticles (AgNPs) synthesized in situ. MethodsOne-step self-etching adhesives with various weight percentages of silver 2-ethylhezanoate (0%, 0.05%, 0.10%, and 0.20%) were obtained by in-situ synthesis; the sizes and distribution of the AgNPs in resin were observed. The antibacterial effects of dentin-resin specimens were assessed by various test methods after being aged for 1 week to 1 year. The microtensile bond strength (μTBS) and interfacial nanoleakage (NL) were evaluated using extracted human teeth after being aged for 1 day and 1 year. ResultsUniform distribution of AgNPs in resin was observed in all experimental groups, and the average size was 4.71 nm-4.81 nm. All groups containing AgNPs showed significant antibacterial differences from the control group (P<0.05) over the ageing of 1 year. Although the increase of concentration tended to improve antibacterial activity, significant differences were not observed between the 0.10% and 0.20% groups (P>0.05). No significant differences were observed between all experimental groups and the control group in μTBS testing and NL testing at 1-day and 1-year time points (P>0.05). Conclusions0.10% AgNPs synthesized in situ might be appropriate to impart a long-term antibacterial ability to the one-step self-etching adhesive, without affecting its adhesive performance. Clinical SignificanceThis study suggests that in-situ synthesis of AgNPs is an effective method to improve the antibacterial ability of dental adhesives with the potential to inhibit secondary caries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.